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Die F�higkeit zur Steuerung von supra- und supermolekula-
rer Selbstorganisation ist eine Grundvoraussetzung in der
supramolekularen Chemie und der Nanotechnologie. Diese
F�higkeit wurde zum Entwurf komplement�rer Molek"le
genutzt, die interessante sph�rische und kapself$rmige Ar-
chitekturen bilden, die – wie auch in der Natur oft der Fall –
eine hohe Symmetrie aufweisen.[1–3] Diese supramolekularen
Strukturen haben ein großes Potenzial f"r die Verabreichung
von Wirkstoffen, in der selektiven Katalyse oder der Nach-
ahmung von Zellen. Vergleichbare Beispiele im Bereich der
Nanotechnologie und der supramolekularen Selbstorganisa-
tion sind komplexe, ineinander greifende Kapseln, die insta-
bile Materialien umschließen,[4] Reaktionsgeschwindigkeiten
erh$hen[5] oder die Bef$rderung durch inkompatible Umge-
bungen erm$glichen.[6] Kovalente und nichtkovalente r$h-
renf$rmige Architekturen werden immer vielversprechender
f"r Anwendungen,[7,8] und komplexe Kombinationen von
Phospholipidbeh�ltern und Nanor$hren sind zum Aufbau
mikroskopischer Netzwerke verwendet worden, die den
Durchgang von Molek"len "ber verbindende R$hren er-
m$glichen.[9] Biologische Beispiele der Wechselwirkung von
Sph�ren und R$hren sind die Kommunikation zwischen
Zellen mittels nanotubularer Zytonemen (untersucht mit
fluorenzenzmarkiertem Weizenkeim-Agglutinin)[10] und die
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Synergie zwischen Amphiphysin und Dynamin in der Cla-
thrin-vermittelten Endozytose.[11]

Wir beschreiben hier die supermolekulare Selbstorgani-
sation von supramolekularen Nanoarchitekturen zu Sph�ren,
R$hren oder Kombinationen der beiden im Sub-Mikrome-
termaßstab. Bei elektronen- oder kraftmikroskopischen Un-
tersuchungen zeigt sich, dass diese ?berstrukturen mitein-
ander verbunden sind oder knospenf$rmig aufeinander
wachsen. Das fragliche Tekton (supramolekularer (diskreter)
Baustein; 16 oder 36·Ga12 in Abbildung 1), eine nahezu

sph�rische Nanokapsel auf der Basis von Pyrogallol[4]aren
(Pg oder 1–3, allgemeine Struktur siehe Abbildung 1), wird
von 72 Wasserstoffbr"cken zusammengehalten. Es hat lipo-
phile Alkylreste wechselnder L�nge, die in verschiedenem
Maße, abh�ngig von der Ausgangsverbindung, von der ku-
gelf$rmigen Schale abstehen.[12–14] Die durch Wasserstoff-
br"cken gebildeten „N�hte“ und „Fl�chen“ des Sph�roiden
k$nnen je nach L�nge der Kohlenstoffkette nach außen of-
fengelegt werden (zumindest im festen Zustand), und es wird
vorgeschlagen, dass diese Einfl"sse gemeinsam eine wichtige
Rolle bei der Stabilisierung der sub-mikrometergroßen
?berstruktur spielen.

Pyrogallol[4]arene kristallisieren je nach L$sungsmittel
entweder in einer Doppelschicht oder in einer Anordnung
von hexameren Nanokapseln.[12–14] Die Stabilit�t dieser He-
xamere in sowohl polaren als auch unpolaren Medien wurde
in einer Reihe von Untersuchungen der Kapseln in L$sung
demonstriert.[15–17] Tats�chlich wurde diese Stabilit�t vor
kurzem in einer Untersuchung mit fluoreszierenden Mole-
k"len genutzt, die im Innern einer Kapsel gebunden waren,
um so Aufschluss "ber das Kapselinnere zu erhalten.[14] Bis

jetzt ist jedoch nur wenig "ber die Aggregation und die su-
pramolekulare Selbstorganisation dieser l$sungsstabilen Ge-
bilde bekannt.

Mithilfe dynamischer Lichtstreuung (dynamic light scat-
tering, DLS) beobachteten wir bei verschiedenen Pg-Hexa-
meren in verd"nnter L$sung (typische Konzentration ca.
10�3

m) große supermolekulare Aggregate mit Durchmessern
von 80 bis 120 nm.[18] Ultraschallbehandlung der L$sungen
f"hrte zur Bildung von 4 nm großen Gebilden, was darauf
hindeutete, dass nun die individuellen Pg-Hexamere vorlagen
(Abbildung 1A). Innerhalb einiger Stunden bildeten sich
schließlich wieder die gr$ßeren Aggregate, wie sich bei DLS-
Untersuchungen zeigte. In w�ssriger L$sung wurde keine
Aggregation beobachtet, DLS zeigt hier lediglich die diskre-
ten Hexamere. Die Stabilit�t der Aggregate und die Rever-
sibilit�t der Aggregatbildung in nichtw�ssrigem Milieu er-
m$glichten es uns, zur Untersuchung dieser Partikel Trans-
missionselektronenmikroskopie (TEM), Rasterelektronen-
mikroskopie (REM) und Rasterkraftmikroskopie (AFM)
einzusetzen, die zum Teil unerwartete Ergebnisse lieferten.

Nach Verdunstung einer ca. 10�4
m Acetonl$sung des Pg-

Hexamers (16, R= Isobutyl, Abbildung 1 A) unter Normal-
bedingungen wurden mittels TEM große Aggregate beob-
achtet (Abbildung 2A). Es zeigte sich, dass die Partikel
sph�risch und von einheitlicher Form waren und einen weiten
Bereich von Durchmessern aufwiesen (92� 42 nm), wenn sie
aus einer Acetonl$sung hergestellt wurden. Des Weiteren
waren manche sph�rischen Aggregate durch r$hrenf$rmige
Strukturen verbunden (Abbildung 2B). Bei der Aggregation
spielte die Vedunstungsgeschwindigkeit eine Rolle, denn die
Zahl der gefundenen Aggregate nahm ab, wenn ein L$-
sungsmittel mit h$herem Siedepunkt eingesetzt wurde, und
zudem ergab sich ein andersartiges Kristallwachstum, wie
mittels TEM beobachtet wurde.[19]

Bei �hnlichen Konzentrationen in Acetonitril (ca. 10�4
m)

oder bei h$heren Konzentrationen in Chloroform (ca. 10�2
m)

schichteten sich die sph�rischen Aggregate aufeinander, an-
statt ineinander zu wachsen (Abbildung 2C,D). TEM-Un-
tersuchungen w�ssriger L$sungen von 16 zeigten wiederholt
amorphes Material anstelle der sph�rischen Aggregate.
Ethylacetat stellte sich als schlechtes L$sungsmittel f"r die
Aggregatbildung heraus; Gr"nde sind wohl die Tatsache, dass
eine Reihe von Pg-Hexameren leicht aus diesem L$sungs-
mittel kristallisieren,[13] und sein vergleichsweise hoher Sie-
depunkt.[20]

F"r einen direkten Vergleich von Doppelschicht und
Hexamer durch TEM wurde 16 in der Doppelschicht-Form
aus Aceton umkristallisiert, einem L$sungsmittel, von dem
bekannt ist, dass es die supramolekulare Ordnung aufrecht
erh�lt, egal ob Hexamer oder Doppelschicht (aus Ethylacetat
wird ausschließlich das Hexamer gebildet). Die TEM-Auf-
nahmen der Doppelschichtstruktur zeigten nur eine be-
grenzte Zahl sub-mikrometergroßer sph�rischer Aggregate
neben einer großen Menge amorphen Materials (Abbil-
dung S1 in den Hintergrundinformationen). Die Tatsache,
dass "berhaupt sph�rische Aggregate vorlagen, deutet darauf
hin, dass sich die Doppelschichtstruktur mit der Zeit in eine
hexamere Struktur umwandelt. Diese Erscheinung wurde
pulverr$ntgenographisch (Abbildung S2 in den Hinter-

Abbildung 1. Bildung von hexameren Kapseln aus Pyrogallol[4]arenen
Dber WasserstoffbrDcken oder Metallkoordination. A) Kristallisation
aus einem geeigneten LGsungsmittel (z. B. Ethylacetat) fDhrt zur Bil-
dung von H-brDckengebundenen Hexameren mit abstehenden Alkyl-
ketten. Der durchschnittliche Durchmesser eines einzelnen Hexamers
im festen Zustand betrFgt ca. 4 nm.[13] B) Reaktion von Galliumnitrat-
Hydrat mit 3 in einer Wasser/Aceton-Mischung ergibt metallkoordi-
nierte Kapseln, in denen Wasserstoffatome der Hydroxygruppen der
Pyrogallol[4]arene durch Metallzentren ersetzt werden. [grau C, weiß
H, rot O, grDn Ga; Ethylacetat und WassermolekDle wurden der Jber-
sichtlichkeit halber weggelassen.][23]
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grundinformationen) sowie durch weitere TEM-Untersu-
chungen aufgekl�rt.[20]

R$hrenartige Verbindungsst"cke zwischen einzelnen
Sph�ren ließen sich am einfachsten beobachten, wenn die
Proben aus Chloroform- oder Dichlormethanl$sungen her-
gestellt wurden (gelegentlich entstanden solche Ensembles
allerdings auch aus Acetonitril und Aceton, Abbildung 2B).
Im Allgemeinen hatten diese R$hren kleinere Durchmesser

als die sph�rischen Aggregate (die oft an ihren Enden ge-
funden wurden) und wurden sowohl in einer glatten als auch
in einer rauen Morphologie gefunden (Abbildung 2E–J). Die
glatteren R$hren, meist mit einer L�nge von knapp einem
Mikrometer, herrschten dabei vor (Abbildung 2E–I). Die
raueren R$hren wurden zumeist aus Chloroforml$sungen
gebildet, hatten einen gr$ßeren Durchmesser und waren
k"rzer als die glatten R$hren (L�ngen bis ann�hernd 400 nm,
Abbildung 2J). Die Untersuchung beider Varianten durch
TEM und REM zeigte halbkugelartige Gebilde, die den
Anschein von sph�rischen Aggregaten hatten, die knospen-
artig auf den R$hren wuchsen (Abbildung 2E,F,H–J). Diese
Aggregate verteilten sich statistisch "ber die ganze L�nge der
R$hren und hatten vergleichbare Durchmesser.

AFM-Aufnahmen st"tzen die Befunde der Elektronen-
mikroskopie hinsichtlich Struktur und r�umlicher H$he der
sph�rischen ?berstrukturen. Eine Untersuchung der Aggre-
gate durch AFM im Kontaktmodus zeigte sph�rische Regio-
nen mit H$hen im Bereich von 60 bis 80 nm (aus 26 gebildete
Aggregate, Abbildungen 1A, 3 und S3-S5). Diese Befunde
stimmen gut mit jenen aus den DLS- und TEM-Untersu-
chungen "berein.

TEM von metallkoordinierten Kapseln (Hexameren, die
in den verwendeten L$sungsmitteln nicht zerfallen k$nnen;
siehe Ga-koordiniertes Hexamer 36·Ga12 in Abbildung 1B)
sollte Aufschluss dar"ber geben, ob diese sub-mikrometer-
großen Aggregate aus Doppelschichten von Pyrogal-
lol[4]aren oder aus dessen Hexameren gebildet werden.[21] Es
wurden sph�rische Aggregate von �hnlicher Gr$ße wie bei
den wasserstoffbr"ckengebundenen Hexameren beobachtet,
wobei die Aufnahmen erheblich dunkler waren, was h$chst-
wahrscheinlich auf den hohen Gehalt an Gallium in den re-
sultierenden ?berstrukturen zur"ckzuf"hren ist (Abbil-
dung 2K,L). Diese Befunde deuten darauf hin, dass die
sph�rischen Aggregate tats�chlich aus diskreten hexameren
Bausteinen bestehen und nicht auf Doppelschichten beruhen.
Dies wird auch durch Untersuchungen von Coleman et al.
gest"tzt, in denen aus p-Acylcalix[4]aren feste Lipidnano-
teilchen (solid lipid nanoparticles, SLNs) erzeugt werden

Abbildung 2. TEM- und SEM-Aufnahmen von Aggregaten aus Pyrogal-
lol[4]arenen. A) TEM-Aufnahme von sphFrischen Aggregaten aus einer
AcetonlGsung von 16. B) VergrGßerung eines Bereichs von (A), der eine
rGhrenfGrmige Verbindung zwischen zwei SphFren zeigt. C) TEM-Auf-
nahme einer ChloroformlGsung von 16, in der die Schichtung der Ag-
gregate sichtbar ist. D) TEM-Aufnahme von sphFrischen Aggregaten
aus einer AcetonitrillGsung von 16. E,F) TEM-Aufnahmen von SphFren
und RGhren aus einer ChloroformlGsung von 16. G) TEM-Aufnahme
eines Netzwerks von SphFren und RGhren, das sich aus einer Dichlor-
methanlGsung von 16 gebildet hat. H)–J) REM-Aufnahmen von SphF-
ren und RGhren aus einer ChloroformlGsung. K,L) TEM-Aufnahmen
von metallkoordinierten Kapseln 36·Ga12, wie sie sich aus einer Aceton-
lGsung bilden. (MaßstFbe: A, G: 200 nm; B, D: 20 nm; C, E, H–J:
100 nm; F, K, L: 50 nm.)

Abbildung 3. AFM-Aufnahme des Hexamers 26 (R=Pentyl, Abbil-
dung 1); Messung der HGhe der sphFrischen Aggregate.
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konnten.[22] Es wurden große Objekte mit Durchmessern von
250 nm beobachtet, die allerdings beim Trocknungsprozess
etwas flacher wurden. Aus ihren Untersuchungen leiteten die
Autoren ab, dass ihre Objekte solide sind. Liposomale Sys-
teme k$nnten unter diesen Bedingungen nicht bestehen (sie
w"rden zusammenfallen), und daher folgern wir, dass die
Objekte in unseren Untersuchungen ebenfalls solide sind –
sie setzen sich aus vielen benachbarten Hexameren zusam-
men und basieren nicht auf einem Doppelschicht-Motiv
(Abbildung 4).

Anders als bei nahezu allen Beispielen k"nstlicher Vesi-
kel-Systeme auf Molek"l-Basis findet bei den hier vorge-
stellten supramolekularen Systemen die Selbstorganisation
der Hexamere vor der Bildung der gr$ßeren Aggregate statt.
Die Eigenschaften des L$sungsmittels sind sehr wichtig bei
der Bildung dieser großen Strukturen; so behindert Wasser
anscheinend die Bildung der Aggregate, was darauf schließen
l�sst, dass es die Wechselwirkungen zwischen den Hexameren
st$rt. Die genauen Wechselwirkungen der Hexamere unter-
einander sind bisher nicht bekannt, diese Aggregation ist
jedoch ein allgemeines Ph�nomen bei einer Reihe von Py-
rogallol[4]arenen.[23]

Die hier gezeigten, großen Aggregate k$nnten entweder
durch eine große Zahl von Van-der-Waals-Wechselwirkungen
zwischen den benachbarten Alkylketten oder durch direkte
Wechselwirkungen zwischen den hydrophilen Fl�chen der
einzelnen supramolekularen Gebilde stabilisiert werden, so
wie es auch im festen Zustand beobachtet wird.[13] Nicht zu-
letzt k$nnen die Alkylketten der Nanosph�roide auch mit
chemischen Funktionalit�ten versehen werden; dies d"rfte
sich – in Verbindung mit der M$glichkeit, Gastmolek"le in
das Innere der Hexamere aufzunehmen – bei zuk"nftigen
Untersuchungen und Anwendungen der hier vorgestellten
Aggregate als n"tzlich erweisen.
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